
Development of a Digital Pressure Sensor Emulator

for Altimeter Testing

Altimeter Buddies Again Team
T-813

Dan Wolf - NAR 24516
Mary Kuzel - NAR 46379

NARCON 2017
2/24/2017

Project Abstract

The purpose of this project was to develop a hardware device that could be used to emulate a

pressure sensor. One limitation in performance analysis of altimeters has been understanding

the details of how the altimeter software processes the barometric pressure data. In my team’s

NARAM 58 R&D report, using a pressure chamber, I2C protocol logic analyzer, and a reference

altimeter, we were able to understand the capability of the current altimeters approved for

NAR contest use to accurately compute altitude.

However both flight and altitude chamber testing done by my team and others has identified

some gaps in understanding how commercial altimeters operate in two key areas. 1) Launch

detection and robustness of the launch detect algorithm to prevent false triggering. 2) Filtering

of the altitude data including the ability to filter out spikes in the data that often occur at motor

ejection. These spikes in the data can cause over/under reporting of the peak altitude. The

other limitation in testing done to date is that most readily available pressure chambers cannot

simulate the actual atmospheric pressure changes that occur during a rocket flight.

To overcome these limitations, this project proposes taking an altimeter and removing its

pressure sensor and replace it with a piece of hardware called a pressure sensor emulator. This

device “looks” to the altimeter software just like the sensor it replaced. However, the emulator

can be programmed to send raw pressure data to the altimeter processor that looks like any

flight profile desired, including data with ejection spikes, noisy data during launch, etc. In this

way the ability of the altimeter to handle these issues can be better understood. It can also

simulate slow launches, fast launches, and launches to any altitude.

To date, the process for creating the flight profiles has been developed and the hardware

completed for the pressure sensor emulator. The next step is to complete the software of the

emulator itself so that actual testing can be completed.

Contents
1.0 Introduction .. 4

2.0 Design Considerations and Approach Taken ... 6

2.1 Detailed Design Approach ... 7

2.2 Conversion of raw data to pressure .. 10

2.3 Converting pressure back to uncompensated pressure and temperature 11

3.0 Data Collection and Analysis ... 12

3.1 Creating the raw data arrays ... 12

3.2 Emulator software development .. 12

4.0 Conclusions and Next Steps .. 12

Appendix A – References .. 13

Appendix B – Equipment Used & Expenditures .. 14

Appendix C – I2C Specification .. 15

1.0 Introduction
There are several commercial altimeters on the market that are used in the sport rocketry hobby.

Initially these altimeters were most popular with high power rocket enthusiasts for both reporting

altitude, recording flight profile, and also offering features like dual recovery system deployment. As

these devices matured and grew in popularity, the desire and interest to use them for contest rocketry

came about, both in the United States and Internationally. Like in the early days of optical tracking,

there is still room for growth in using altimeters for contest use. Whereas a sport rocketry flier is mostly

concerned about the altimeters basic functionality (did it report an altitude that looks reasonable, did it

deploy the chutes at the right times/altitudes, etc.), errors of +/-10 or even 20% are not fatal and

probably not noticeable. When altimeters started to be used for contest flights, they suddenly became

more heavily scrutinized. How accurate were they, what were the limitations, what issues are there,

and general mistrust that is found with any new technology. Further, they were black boxes whose

process for actually determining the altitude was a mystery.

Several early R&D reports were done to study altimeters, their accuracy, and suitability for use in

rocketry competition. Notable among them were references 1 through 5 (see Appendix C). These

reports found altimeters as a suitable alternative to optical tracking. However, these reports considered

the accuracy of the entire instrument (altimeter). In an attempt to identify the error budget and error

sources of altimeters, our NARAM 54 R&D report (reference 21) examined the technology used. The key

finding was that the latest digital pressure sensors do an excellent job of measuring pressure quite

accurately over the range that contest rockets fly. Recommendations from that report were that only

digital pressure sensors be used that met a certain set of criteria. The NAR adopted those

recommendations in the current approved altimeter list for contest use. This eliminated of the key

accuracy and performance limitations among altimeters used for NAR competition.

Having studied and mitigated some of the altimeter risk with the NARAM 54 report, our work in our

NARAM 58 report (reference 23) focused on the accuracy of altimeters in taking raw pressure data from

the sensor and computing the altitude. This work resulted in one manufacturing correcting an error in

their altitude calculations that caused altitudes to report too high the higher the flight (divergence from

the actual altitude). Another altimeter was found to have an over aggressive noise filter that cause the

peak altitude reported to contain significant error. However, due to limitations of controlling the

vacuum chamber to simulate an actual flight profile, the errors for a typical rocket flight would most

often not be significant. This report retired another risk of most of today’s commercial altimeters.

Most do a great job of accurately converting and reporting altitude data.

In spite of the success that altimeters exhibited in the all the projects cited, there are still some areas

where the performance of commercial altimeters is not fully understood. One is in the area of launch

detection. Common issues here are of two types, 1) launch detected prematurely, due to a wind gust

or pressure change that occurred when the altimeter was placed in the rocket and 2) launch not

detected at all and the altimeter is returned reporting 0 altitude, prior flight’s altitude, or no altitude.

The second issue is the performance of the altimeter software to filter out different types of noise, and

specifically, spikes in the data caused by ejection.

In our NARAM-58 report we suggested that one way to measure performance for both launch detection

and filtering would be to build a hardware device that “emulates” a pressure sensor. The sensor would

be removed from the altimeter and the pressure sensor emulator would be connected in its place. The

emulator would have the capability of sending raw data to the altimeter processor in the same format

as the sensor. The altimeter would function as usual. However, the emulator, when started would send

raw data for a desired flight profile. Profiles could be created for 100m, 200,m, 300m, 400, and so forth

peak altitudes. In fact flight profiles could be generated for most any flight conceivable including taking

a flight profile from Rocksim, Space Cad, Open Rocket of any contest rocket design from 1/8A through G

power and back converting it to raw data. The sensor emulator would then take this raw data file and

send it to the altimeter. If the altimeter does its job properly, the resulting flight profile should exactly

match the flight profile from the flight simulator. The next step would be to add pressure spikes to

these flight profiles and see how they affect the ability of the altimeter to filter those out properly. The

other types of tests to run would be launch detect profiles to see how robust the altimeter would be to

noise likely to be encounter on the pad and to see at what altitude the altimeter actually detects launch.

The figures below illustrate the concept:

 Sensor

Micro-

controller

SCK SDA

Micro-

controller

SCK SDA

Micro-

controller

SCK SDA

Typical altimeter with I2C
Sensor Interface Sensor removed and wires added to pads for board connections

to sensor emulator board.

ALTIMETER
ALTIMETER with pressure

sensor removed

Pressure sensor emulator

2.0 Design Considerations and Approach Taken
All altimeters approved for NAR and FAI contest use a digital pressure sensor that has an I2C interface.

See table 1 for altimeter sensor summary.

Manufacturer Model No Sensor Absolute
Accuracy
Typical

Relative
Accuracy
Typical

Resolution Interface

Adrel ALT-BMP Bosch Sensortec
BMP180

1 mBar 0.12 mBar

< 1 meter I2C

Altus Metrum MicroPeak Measurement
Specialties MS5607

1.5 mBar 0.5 mBar < 1 meter I2C/SPI

Jolly Logic Altimeter
One

Bosch Sensortec
BMP851

1 mBar 0.2 mBar

< 1 meter I2C

Jolly Logic Altimeter
Two

Bosch Sensortec
BMP85 ornewer2

1 mBar 0.2 mBar

< 1 meter I2C

Jolly Logic Altimeter
Three

Bosch Sensortec
BMP85 or newer2

1 mBar 0.2 mBar

< 1 meter I2C

Perfectflite ARPA Believe to be
Measurement
Specialties MS56113

1.5 mBar 0.5 mBar < 1 meter I2C/SPI

Perfectflite Pnut Measurement
Specialties MS5611

1.5 mBar 0.5 mBar < 1 meter I2C/SPI

Perfectflite Stratologger Measurement
Specialties MS5611

1.5 mBar 0.5 mBar < 1 meter I2C/SPI

Perfectflite Firefly Believe to be
Measurement
Specialties MS56113

1.5 mBar 0.5 mBar < 1 meter I2C/SPI

Table 1 - NAR and FAI altimeters sensor specification summary

Notes:
1. The original Jolly Logic Altimeter One used the Bosch Sensortec BMP85. However, the unit has

been redesigned and forward production may use a newer sensor.
2. Has not been verified. Assume all Jolly Logic Altimeters use a sensor from Bosch Sensortec but

they may be of newer vintage (BMP180, BMP280).
3. Pefectflite Pnut and Stratologger use the Measurement Specialties MS5611. Although not

verified, it is assumed that the APRA and Firefly also use the MS5611 since the specifications for
all of the altimeters are the same.

All of the sensors support the I2C interface as a slave device. Therefore, a pressure sensor emulator

needs to support I2C communication as a slave device. In addition, all the commands or the subset of

the commands used by the altimeter employing the sensor must be supported. See appendix B for

details on the I2C interface.

Several design approaches were considered for how to build the pressure sensor emulator. One

approach was to build a true hardware based emulator. This could be easily done using a field

programmable gate array (FPGA) or Complex Programmable Logic Device (CPLD). The advantage of this

approach is that the emulator needs to emulate the hardware wave forms of an I2C bus. Due to the

teams experience with FPGAs, and implementation of I2C interfaces in FPGAs this was a strong

consideration. By using VHDL (VHSIC Hardware Design Language) the basic design could be

implemented fairly quickly. However, the limitation of this approach is that it would require developing

a board that supports the FPGA or CPLD. Further, a mechanism for changing the flight profiles would

need to be implemented. Finally, this would be a highly specialized technique that would be difficult to

be maintained.

The next approach considered was to use the Atmel ATUSBKEY development board and write a program

that would “bit bang” two of the I/O pins to send the raw data to the altimeter. However, it was

decided that this was not an optimal approach because using software loops may not allow the data

lines to be toggled fast enough.

Finally, it was decided to use the ATUSBKEY development board but to use the built in I2C port as a slave

port. Altimeters use their onboard processors I2C port as a master to interface to the sensors. Because

the emulator must look like a sensor, it must operate in slave mode. The advantage of using the

ATUSBKEY is that data files can easily be written into the storage flash memory on the device. When the

ATUSBKEY is plugged into a computer, it looks like a flash drive. Files from the computer can be copied

to the ATUSBKEY. Then it can be removed from the computer, and connected to the altimeter under

test. When operating, the emulator’s onboard processor can read the data file transferred from the PC

and send the raw data flight profile to the altimeter as the altimeter goes through its power and, launch

detect, and flight data collection sequence.

2.1 Detailed Design Approach
Going from a desired flight profile for the pressure sensor emulator to emulate is a multistep approach.

The steps are listed below:

1. Obtain altitude versus time data.

2. Convert altitude back to pressure. Note that for this step, the starting pressure can be

set to sea level or the launch site level or any other value. Here it is the elevation of

Bong Recreation Area, where the launch this data was collected took place.

 TIME ALTITUDE PRESSURE

2.6 0.034001 99175

2.7 0.204007 99173

2.8 0.034001 99175

2.9 0.459022 99170

3 1.564157 99157

3.1 2.584386 99145

3.2 4.28499 99125

3.3 5.645674 99109

3.4 7.857164 99083

3.5 9.984039 99058

3.6 12.53686 99028

3.7 15.68621 98991

3.8 18.92167 98953

7.2 119.3795 97779

7.3 119.6374 97776

7.4 120.4973 97766

7.5 120.7553 97763

7.6 121.1853 97758

20.7 3.264595 99137

20.8 1.98924 99152

20.9 1.309116 99160

21 -0.646 99183

21.1 -1.32595 99191

BMP180 Coefficients

ac1 8261

 ac2 -1127

 ac3 -14723

ac4 32456

 ac5 24356

 ac6 19323

b1 5498

 b2 59

 mb -32768

 mc -11075

 md 2432

3. Convert the pressure values back to the raw data that would come from the sensor. The

calculations will be dependent upon two things. 1) The manufacturer and model of the

sensor, and 2) The calibration coefficients. One way to do this is to collect the

calibration coefficients from an actual sensor and use those. As part of the function of

the emulator, it must send those calibration coefficients to the altimeter processor

when it collects them. Below is a set of calibration coefficients that came from the

BMP180 sensor used in our NARAM-54 report. It doesn’t matter which set of

coefficients is used. However the same set of coefficients used to do the calculation of

the raw sensor data from the pressure value must be the same as the ones used in the

emulator that it sends to the altimeter processor.

Example:

Altitude = 0 meters (launch site)

244 meters above sea level

Pressure reading

99176 Pascals from altimeter used (it recorded both altitude and pressure)

or use standard atmospheric model formula – 98430 Pascals

Reverse the conversion of algorithm from raw data to pressure and temperature data

and save to a .csv file.

4. Copy .csv file to emulator, connect emulator to altimeter and run.

5. The altimeter flight profile should match the starting point flight profile.

2.2 Conversion of raw data to pressure
For completeness this section walks through converting the raw data to pressure. That is the

algorithm the altimeter uses. For the emulator, the reverse process is needed to create the data

set that it sends to the altimeter. That will be covered in the next section. The algorithm for

converting the raw data from the sensor to pressure is published in the sensor data sheet.

Figure 1 - Conversion of raw data to pressure algorithm from BMP180 datasheet

Applying this to raw data…

Uncompensated temperature value, UT = 27623

Uncompensated pressure value, UP = 40382

First calculate true temperature (this is the temperature of the sensor die)

X1 = (UT – AC6) * AC5 / 215 = ((27623 – 19323)* 24356)215 = 6169

X2 = MC*211/(X1+MD) = (-11075*211)/(6169+2432) = -2637

B5 = X1 + X2 = 6169 + (-2637) = 3532

T = (B5 + 8)/24 = (3532+8)/16 = 221 which is degrees C x 10 or 22.1 C

Next calculate the true pressure

B6 = B5 – 4000 = 3532-4000 = -468

X1 = (B2*(B6*B6/212))/211 = (((59*(-468)*(-468))/4096)/2048) = 1

X2 = AC2 * B6 / 211 = (-1127)*(-468)/2048 = 257

X3 = X1+ X2 = 1 + 257 = 258

B3 = ((AC1*4)+X3 << oss +2)/4 = ((8261*4)+258+2)/4 = 8326

X1 = (AC3*B6)/213 = (-14723)*(-468)/8192 = 841

X2 = (B1*(B6*B6/212))/216 = (5498)*((-468)*(-468)/4096)/65536 = 4

X3 = ((X1+X2)+2/22 = (841+4+2)/4 = 211

B4 = (AC4 * (X3 + 32768))215 = ((32456)*(211+32768))/32768 = 32664

B7 = (UP-B3)*(50000 >> oss) = (40382 – 8325) * (50000) = 1602800000

B7 < 0x80000000 so

P = (B7/B4)*2) = (1602800000/32664)*2 = 98138

X1 = (P/28) * (P/28) = 146689

X1 = (X1*3038)/216 = (146689*3038)/65536 = 6799

X2 = (-7357*P)/216 = -11016

P = P + (X1+X2+3791)/24 = 98138+ (6799 -11016+3791)/16 = 98712

2.3 Converting pressure back to uncompensated pressure and

temperature
The above procedure is reversed for computing the uncompensated pressure and temperature from the

pressure value. Any suitable temperature can be used, such as a value from 20 to 25 C. However,

because the final value of pressure must be worked backwards to find the final X1 and X2 values, it is

not as straightforward. A matrix of equations needs to be solved.

Equation 1: 98712 = Pold + (X1+X2+3791)/16

Equation 2: X2 = (-75357*Pold)/65536

Equation 3: X1 = (Pold*Pold)*3038/65536

Three equations with three unknowns, however equation 3 is nonlinear. Further investigation will be

needed to determine if some adjustments or other techniques will be needed here.

3.0 Data Collection and Analysis

3.1 Creating the raw data arrays
The complexity of reversing the order of the equations to create the uncompensated pressure and

temperature values was a surprise. Perhaps the process can be simplified if the coefficients were

changed to simple values such that the calculations are easier. This needs to be investigated further.

3.2 Emulator software development
Currently the emulator board software is still under development. The code for operation of the I2C

slave interface is still not operational. The main issue is compiler differences between the Atmel

reference design for the I2C slave and the Winavr compiler. The incompatibility is not a major issue, but

will take time to resolve.

4.0 Conclusions and Next Steps
The key next steps in this project are:

1. Resolve issues with the I2C slave interface code and get the link operational between the

altimeter and the emulator.

2. Develop a workable algorithm for creating the uncompensated pressure and temperature values

from the pressure values.

3. Once 1 and 2 are completed, create a series of altitude profiles of different altitudes, with noise

and without to evaluate the altimeter performance of the ALT-BMP

4. Repeat 1 through 3 with the MS5611 and MS5607 sensors so that the Perfectflite and

Micropeak altimeters can also be tested.

5. Develop a test procedure for altimeter performance evaluation using the sensor emulator.

6. Use the data collected to find how well different altimeters handle spikes in the data caused by

ejection and to determine robustness of launch detection.

Appendix A – References
1. Kidwell, Christopher and Ash-Poole, Jennifer 2004, A Comparison of Altimeters and Optical

Tracking. R&D report for Mostly Harmless for NARAM 46

http://www.narhams.org/library/rnd/Altimeters.pdf

2. Kidwell, Christopher and Ash-Poole, Jennifer 2005, Measuring Absolute Accuracy of Altimeters

R&D report for Slightly Harmful for NARAM 47

3. Curcio, Larry 2008, Analysis of Flight Computer Data From Off-Vertical Trajectories

4. Curcio, Larry 2008, Using Numerical Methods to Explore Barometric Flight

5. Schulz, David 2004, Application of the Kalman Filter to Rocket Apogee Detection

6. Graham Jackson and Chris Crocker, 2000, The Use of Altimeters in Height Measurement web

document: http://www.hills-database.co.uk/altim.html

7. U.S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington, D.C., 1976

8. United States Committee on Extension to the Standard Atmosphere, U.S. Standard Atmosphere

1976, web document: http://modelweb.gsfc.nasa.gov/atmos/us_standard.html

9. Kansas Flyer Web Site, Altitude Theory, web page:

http://www.kansasflyer.org/Documents/AltitudeTheory.pdf

10. Texas Instruments, 1998, Low-Power Signal Conditioning for a Pressure Sensor, Application Note

SLA0034, web page http://www.ti.com/lit/an/slaa034/slaa034.pdf

11. WinAVR Website: http://winavr.sourceforge.net

12. LUFA Website: http://www.fourwalledcubicle.com/LUFA.php

13. Atmel Website: http://www.atmel.com

14. Bosch Sensortec Website: http://www.bosch-sensortec.com

15. Freescale Website: http://www.freescale.com

16. Measurement Specialties, Website: http://www.meas-spec.com

17. ST Micro Website: http://www.st.com

18. CSG Shop Website: http://www.csgshop.com

19. DataSheets and application notes from Atmel, Bosch Sensortec, Measurement Specialties, ST

Micro for the development kits and devices used (key sheets included)

20. Altimeter suppliers websites and manuals from Adept, Adrel, Featherweight, G-wiz, Jolly Logic,

Missileworks, Perfectflite, and Transolve

21. Wolf, Dan & Wolf, Mary, 2012, On the Use of Barometric Sensor Based Altimeters for NAR

Altitude Contest Events

22. Wolf, Dan & Wolf, Mary, 2015, Further Studies on Barometric Sensor Based Altimeters for NAR

Competition

23. Wolf, Dan & Wolf, Mary, 2016, Analysis of Altimeter Performance Using Vacuum Chamber

Testing and Sensor Monitoring

http://www.narhams.org/library/rnd/Altimeters.pdf
http://modelweb.gsfc.nasa.gov/atmos/us_standard.html
http://www.kansasflyer.org/Documents/AltitudeTheory.pdf
http://www.st.com/
http://www.csgshop.com/

Appendix B – Equipment Used & Expenditures

1. Personal Computer (Already had)

2. Microsoft Excel (Already had)

3. Microsoft Word (Already had)

4. Soldering Iron and Solder (Already had)

5. Two Adrel ALT-BMP Altimeters with download unit (Already had)

6. Two AT90USBKEY development boards (Already had)

Total Expenses for project - none

Appendix C – I2C Specification
I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial

computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for

attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board

communication.

I²C uses only two signals (wires), Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with

resistors. Typical voltages used are +5 V or +3.3 V. I²C bus speeds are the 100 kbit/s standard mode and

the 10 kbit/s low-speed mode, but arbitrarily low clock frequencies are also allowed. Recent revisions of

I²C can host more nodes and run at faster speeds (400 kbit/s Fast mode, 1 Mbit/s Fast mode plus or

Fm+, and 3.4 Mbit/s High Speed mode).

I²C defines basic types of messages, each of which begins with a START and ends with a STOP:

 Single message where a master writes data to a slave;

 Single message where a master reads data from a slave;

Virtually all modern pressure sensors use the I2C protocol for interfacing with single messages as

described above.

For more details on the I2C bus, refer to the I2C specification here:

http://www.nxp.com/documents/user_manual/UM10204.pdf

http://www.nxp.com/documents/user_manual/UM10204.pdf

