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Project Abstract 

 

The purpose of this project was to develop a hardware device that could be used to emulate a 

pressure sensor.  One limitation in performance analysis of altimeters has been understanding 

the details of how the altimeter software processes the barometric pressure data.  In my team’s 

NARAM 58 R&D report, using a pressure chamber, I2C protocol logic analyzer, and a reference 

altimeter, we were able to understand the capability of the current altimeters approved for 

NAR contest use to accurately compute altitude.   

However both flight and altitude chamber testing done by my team and others has identified 

some gaps in understanding how commercial altimeters operate in two key areas.  1) Launch 

detection and robustness of the launch detect algorithm to prevent false triggering.   2) Filtering 

of the altitude data including the ability to filter out spikes in the data that often occur at motor 

ejection.  These spikes in the data can cause over/under reporting of the peak altitude.  The 

other limitation in testing done to date is that most readily available pressure chambers cannot 

simulate the actual atmospheric pressure changes that occur during a rocket flight.  

To overcome these limitations, this project proposes taking an altimeter and removing its 

pressure sensor and replace it with a piece of hardware called a pressure sensor emulator.  This 

device “looks” to the altimeter software just like the sensor it replaced.  However, the emulator 

can be programmed to send raw pressure data to the altimeter processor that looks like any 

flight profile desired, including data with ejection spikes, noisy data during launch, etc.  In this 

way the ability of the altimeter to handle these issues can be better understood.  It can also 

simulate slow launches, fast launches, and launches to any altitude. 

To date, the process for creating the flight profiles has been developed and the hardware 

completed for the pressure sensor emulator.  The next step is to complete the software of the 

emulator itself so that actual testing can be completed. 
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1.0 Introduction 
There are several commercial altimeters on the market that are used in the sport rocketry hobby.  

Initially these altimeters were most popular with high power rocket enthusiasts for both reporting 

altitude, recording flight profile, and also offering features like dual recovery system deployment.  As 

these devices matured and grew in popularity, the desire and interest to use them for contest rocketry 

came about, both in the United States and Internationally.   Like in the early days of optical tracking, 

there is still room for growth in using altimeters for contest use.  Whereas a sport rocketry flier is mostly 

concerned about the altimeters basic functionality (did it report an altitude that looks reasonable, did it 

deploy the chutes at the right times/altitudes, etc.), errors of +/-10 or even 20% are not fatal and 

probably not noticeable.  When altimeters started to be used for contest flights, they suddenly became 

more heavily scrutinized.  How accurate were they, what were the limitations, what issues are there, 

and general mistrust that is found with any new technology.  Further, they were black boxes whose 

process for actually determining the altitude was a mystery. 

Several early R&D reports were done to study altimeters, their accuracy, and suitability for use in 

rocketry competition.  Notable among them were references 1 through 5 (see Appendix C).  These 

reports found altimeters as a suitable alternative to optical tracking.  However, these reports considered 

the accuracy of the entire instrument (altimeter).  In an attempt to identify the error budget and error 

sources of altimeters, our NARAM 54 R&D report (reference 21) examined the technology used.  The key 

finding was that the latest digital pressure sensors do an excellent job of measuring pressure quite 

accurately over the range that contest rockets fly.  Recommendations from that report were that only 

digital pressure sensors be used that met a certain set of criteria.  The NAR adopted those 

recommendations in the current approved altimeter list for contest use.  This eliminated of the key 

accuracy and performance limitations among altimeters used for NAR competition.   

Having studied and mitigated some of the altimeter risk with the NARAM 54 report, our work in our 

NARAM 58 report (reference 23) focused on the accuracy of altimeters in taking raw pressure data from 

the sensor and computing the altitude.  This work resulted in one manufacturing correcting an error in 

their altitude calculations that caused altitudes to report too high the higher the flight (divergence from 

the actual altitude).  Another altimeter was found to have an over aggressive noise filter that cause the 

peak altitude reported to contain significant error.  However, due to limitations of controlling the 

vacuum chamber to simulate an actual flight profile, the errors for a typical rocket flight would most 

often not be significant.  This report retired another risk of most of today’s commercial altimeters.   

Most do a great job of accurately converting and reporting altitude data. 

In spite of the success that altimeters exhibited in the all the projects cited, there are still some areas 

where the performance of commercial altimeters is not fully understood.  One is in the area of launch 

detection.  Common issues here are of two types,  1) launch detected prematurely, due to a wind gust 

or pressure change that occurred when the altimeter was placed in the rocket and 2) launch not 

detected at all and the altimeter is returned reporting 0 altitude, prior flight’s altitude, or no altitude. 

The second issue is the performance of the altimeter software to filter out different types of noise, and 

specifically, spikes in the data caused by ejection. 



In our NARAM-58 report we suggested that one way to measure performance for both launch detection 

and filtering would be to build a hardware device that “emulates” a pressure sensor.  The sensor would 

be removed from the altimeter and the pressure sensor emulator would be connected in its place.  The 

emulator would have the capability of sending raw data to the altimeter processor in the same format 

as the sensor.  The altimeter would function as usual.  However, the emulator, when started would send 

raw data for a desired flight profile.  Profiles could be created for 100m, 200,m, 300m, 400, and so forth 

peak altitudes.  In fact flight profiles could be generated for most any flight conceivable including taking 

a flight profile from Rocksim, Space Cad, Open Rocket of any contest rocket design from 1/8A through G 

power and back converting it to raw data.  The sensor emulator would then take this raw data file and 

send it to the altimeter.  If the altimeter does its job properly, the resulting flight profile should exactly 

match the flight profile from the flight simulator.  The next step would be to add pressure spikes to 

these flight profiles and see how they affect the ability of the altimeter to filter those out properly. The 

other types of tests to run would be launch detect profiles to see how robust the altimeter would be to 

noise likely to be encounter on the pad and to see at what altitude the altimeter actually detects launch. 

The figures below illustrate the concept: 
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2.0 Design Considerations and Approach Taken 
All altimeters approved for NAR and FAI contest use a digital pressure sensor that has an I2C interface.  

See table 1 for altimeter sensor summary. 

Manufacturer Model No Sensor Absolute 
Accuracy  
Typical 

Relative 
Accuracy 
Typical 

Resolution Interface 

Adrel ALT-BMP Bosch Sensortec 
BMP180 

1 mBar 0.12 mBar 
 

< 1 meter I2C 

Altus Metrum MicroPeak Measurement 
Specialties MS5607 

1.5 mBar 0.5 mBar < 1 meter I2C/SPI 

Jolly Logic Altimeter 
One 

Bosch Sensortec 
BMP851 

1 mBar 0.2 mBar 
 

< 1 meter I2C 

Jolly Logic Altimeter 
Two 

Bosch Sensortec 
BMP85 ornewer2 

1 mBar 0.2 mBar 
 

< 1 meter I2C 

Jolly Logic Altimeter 
Three 

Bosch Sensortec 
BMP85 or newer2 

1 mBar 0.2 mBar 
 

< 1 meter I2C 

Perfectflite ARPA Believe to be 
Measurement 
Specialties MS56113 

1.5 mBar 0.5 mBar < 1 meter I2C/SPI 

Perfectflite Pnut Measurement 
Specialties MS5611 

1.5 mBar 0.5 mBar < 1 meter I2C/SPI 

Perfectflite Stratologger Measurement 
Specialties MS5611 

1.5 mBar 0.5 mBar < 1 meter I2C/SPI 

Perfectflite Firefly Believe to be 
Measurement 
Specialties MS56113 

1.5 mBar 0.5 mBar < 1 meter I2C/SPI 

Table 1 - NAR and FAI altimeters sensor specification summary 

Notes: 
1. The original Jolly Logic Altimeter One used the Bosch Sensortec BMP85.  However, the unit has 

been redesigned and forward production may use a newer sensor. 
2. Has not been verified.  Assume all Jolly Logic Altimeters use a sensor from Bosch Sensortec but 

they may be of newer vintage (BMP180, BMP280). 
3. Pefectflite Pnut and Stratologger use the Measurement Specialties MS5611.  Although not 

verified, it is assumed that the APRA and Firefly also use the MS5611 since the specifications for 
all of the altimeters are the same. 

 

All of the sensors support the I2C interface as a slave device. Therefore, a pressure sensor emulator 

needs to support I2C communication as a slave device.  In addition, all the commands or the subset of 

the commands used by the altimeter employing the sensor must be supported.   See appendix B for 

details on the I2C interface. 

 
 



Several design approaches were considered for how to build the pressure sensor emulator.  One 

approach was to build a true hardware based emulator.  This could be easily done using a field 

programmable gate array (FPGA) or Complex Programmable Logic Device (CPLD).  The advantage of this 

approach is that the emulator needs to emulate the hardware wave forms of an I2C bus.  Due to the 

teams experience with FPGAs, and implementation of I2C interfaces in FPGAs this was a strong 

consideration.  By using VHDL (VHSIC Hardware Design Language) the basic design could be 

implemented fairly quickly.  However, the limitation of this approach is that it would require developing 

a board that supports the FPGA or CPLD.  Further, a mechanism for changing the flight profiles would 

need to be implemented.  Finally, this would be a highly specialized technique that would be difficult to 

be maintained. 

The next approach considered was to use the Atmel ATUSBKEY development board and write a program 

that would “bit bang” two of the I/O pins to send the raw data to the altimeter.  However, it was 

decided that this was not an optimal approach because using software loops may not allow the data 

lines to be toggled fast enough. 

Finally, it was decided to use the ATUSBKEY development board but to use the built in I2C port as a slave 

port.  Altimeters use their onboard processors I2C port as a master to interface to the sensors.  Because 

the emulator must look like a sensor, it must operate in slave mode.   The advantage of using the 

ATUSBKEY is that data files can easily be written into the storage flash memory on the device.  When the 

ATUSBKEY is plugged into a computer, it looks like a flash drive.  Files from the computer can be copied 

to the ATUSBKEY.  Then it can be removed from the computer, and connected to the altimeter under 

test.  When operating, the emulator’s onboard processor can read the data file transferred from the PC 

and send the raw data flight profile to the altimeter as the altimeter goes through its power and, launch 

detect, and flight data collection sequence. 

2.1 Detailed Design Approach 
Going from a desired flight profile for the pressure sensor emulator to emulate is a multistep approach.  

The steps are listed below: 

1. Obtain altitude versus time data.  

 

 

  

 

 

 

 



2. Convert altitude back to pressure. Note that for this step, the starting pressure can be 

set to sea level or the launch site level or any other value.  Here it is the elevation of 

Bong Recreation Area, where the launch this data was collected took place. 

 

                         TIME       ALTITUDE     PRESSURE 

 

  
2.6 0.034001 99175

2.7 0.204007 99173

2.8 0.034001 99175

2.9 0.459022 99170

3 1.564157 99157

3.1 2.584386 99145

3.2 4.28499 99125

3.3 5.645674 99109

3.4 7.857164 99083

3.5 9.984039 99058

3.6 12.53686 99028

3.7 15.68621 98991

3.8 18.92167 98953

7.2 119.3795 97779

7.3 119.6374 97776

7.4 120.4973 97766

7.5 120.7553 97763

7.6 121.1853 97758

20.7 3.264595 99137

20.8 1.98924 99152

20.9 1.309116 99160

21 -0.646 99183

21.1 -1.32595 99191



BMP180 Coefficients 

ac1 8261

 ac2 -1127

 ac3 -14723

ac4 32456

 ac5 24356

 ac6 19323

b1 5498

 b2 59

 mb -32768

 mc -11075

 md 2432

3. Convert the pressure values back to the raw data that would come from the sensor.  The 

calculations will be dependent upon two things.  1) The manufacturer and model of the 

sensor, and 2) The calibration coefficients.  One way to do this is to collect the 

calibration coefficients from an actual sensor and use those.  As part of the function of 

the emulator, it must send those calibration coefficients to the altimeter processor 

when it collects them.  Below is a set of calibration coefficients that came from the 

BMP180 sensor used in our NARAM-54 report.  It doesn’t matter which set of 

coefficients is used.  However the same set of coefficients used to do the calculation of 

the raw sensor data from the pressure value must be the same as the ones used in the 

emulator that it sends to the altimeter processor. 

 

Example:   

Altitude = 0 meters (launch site) 

244 meters above sea level 

Pressure reading 

99176 Pascals from altimeter used (it recorded both altitude and pressure)  

or use standard atmospheric model formula – 98430 Pascals 

 

 

 

 

 

 

 

 

Reverse the conversion of algorithm from raw data to pressure and temperature data 

and save to a .csv file. 

 

4. Copy .csv file to emulator, connect emulator to altimeter and run. 

5. The altimeter flight profile should match the starting point flight profile. 

 



2.2 Conversion of raw data to pressure  
For completeness this section walks through converting the raw data to pressure.  That is the 

algorithm the altimeter uses.  For the emulator, the reverse process is needed to create the data 

set that it sends to the altimeter.  That will be covered in the next section. The algorithm for 

converting the raw data from the sensor to pressure is published in the sensor data sheet. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 - Conversion of raw data to pressure algorithm from BMP180 datasheet 



Applying this to raw data… 

Uncompensated temperature value, UT = 27623 

Uncompensated pressure value, UP = 40382 

 

First calculate true temperature (this is the temperature of the sensor die) 

X1 = (UT – AC6) * AC5 /  215  = ((27623 – 19323)* 24356)215  = 6169 

X2 = MC*211/(X1+MD) = (-11075*211)/(6169+2432) = -2637 

B5 = X1 + X2 = 6169 + (-2637) = 3532 

T = (B5 + 8)/24 = (3532+8)/16 = 221 which is degrees C x 10 or 22.1 C 

 

Next calculate the true pressure 

B6 = B5 – 4000 = 3532-4000 = -468 

X1 = (B2*(B6*B6/212))/211 = (((59*(-468)*(-468))/4096)/2048) = 1 

X2 = AC2 * B6 / 211 = (-1127)*(-468)/2048 = 257 

X3 = X1+ X2 = 1 + 257 = 258 

B3 = ((AC1*4)+X3 << oss +2)/4 = ((8261*4)+258+2)/4 = 8326 

X1 = (AC3*B6)/213 = (-14723)*( -468)/8192 = 841 

X2 = (B1*(B6*B6/212))/216 = (5498)*((-468)*(-468)/4096)/65536 = 4 

X3 = ((X1+X2)+2/22 = (841+4+2)/4 = 211 

B4 = (AC4 * (X3 + 32768))215  = ((32456)*(211+32768))/32768 = 32664 

B7 = (UP-B3)*(50000  >> oss) = (40382 – 8325) * (50000) = 1602800000 

B7 <  0x80000000 so 

P = (B7/B4)*2) = (1602800000/32664)*2 = 98138 

X1 = (P/28) * (P/28) = 146689 

X1 = (X1*3038)/216  = (146689*3038)/65536 = 6799 

X2 = (-7357*P)/216 = -11016 

P = P + (X1+X2+3791)/24  = 98138+ (6799 -11016+3791)/16 = 98712 

 

2.3 Converting pressure back to uncompensated pressure and 

temperature 
The above procedure is reversed for computing the uncompensated pressure and temperature from the 

pressure value.  Any suitable temperature can be used, such as a value from 20 to 25 C.  However, 

because the final value of pressure must be worked backwards to find the final X1 and X2 values, it is 

not as straightforward.  A matrix of equations needs to be solved. 

Equation 1:  98712 = Pold + (X1+X2+3791)/16 

Equation 2:  X2 = (-75357*Pold)/65536 



Equation 3: X1 = (Pold*Pold)*3038/65536 

Three equations with three unknowns, however equation 3 is nonlinear.  Further investigation will be 

needed to determine if some adjustments or other techniques will be needed here. 

 

3.0 Data Collection and Analysis 
 

3.1 Creating the raw data arrays 
The complexity of reversing the order of the equations to create the uncompensated pressure and 

temperature values was a surprise.  Perhaps the process can be simplified if the coefficients were 

changed to simple values such that the calculations are easier.  This needs to be investigated further. 

3.2 Emulator software development 
Currently the emulator board software is still under development. The code for operation of the I2C 

slave interface is still not operational.  The main issue is compiler differences between the Atmel 

reference design for the I2C slave and the Winavr compiler.  The incompatibility is not a major issue, but 

will take time to resolve. 

4.0 Conclusions and Next Steps 
The key next steps in this project are: 

1. Resolve issues with the I2C slave interface code and get the link operational between the 

altimeter and the emulator. 

2. Develop a workable algorithm for creating the uncompensated pressure and temperature values 

from the pressure values. 

3. Once 1 and 2 are completed, create a series of altitude profiles of different altitudes, with noise 

and without to evaluate the altimeter performance of the ALT-BMP 

4. Repeat 1 through 3 with the MS5611 and MS5607 sensors so that the Perfectflite and 

Micropeak altimeters can also be tested. 

5. Develop a test procedure for altimeter performance evaluation using the sensor emulator. 

6. Use the data collected to find how well different altimeters handle spikes in the data caused by 

ejection and to determine robustness of launch detection. 
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Appendix B – Equipment Used & Expenditures 
 

1. Personal Computer (Already had) 

2. Microsoft Excel (Already had) 

3. Microsoft Word (Already had) 

4. Soldering Iron and Solder (Already had) 

5. Two Adrel ALT-BMP Altimeters with download unit (Already had) 

6. Two AT90USBKEY development boards (Already had) 

Total Expenses for project - none 

 

 

  



Appendix C – I2C Specification 
I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial 

computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for 

attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board 

communication.  

I²C uses only two signals (wires), Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with 

resistors. Typical voltages used are +5 V or +3.3 V.  I²C bus speeds are the 100 kbit/s standard mode and 

the 10 kbit/s low-speed mode, but arbitrarily low clock frequencies are also allowed. Recent revisions of 

I²C can host more nodes and run at faster speeds (400 kbit/s Fast mode, 1 Mbit/s Fast mode plus or 

Fm+, and 3.4 Mbit/s High Speed mode).  

I²C defines basic types of messages, each of which begins with a START and ends with a STOP: 

 Single message where a master writes data to a slave; 

 Single message where a master reads data from a slave; 

 

Virtually all modern pressure sensors use the I2C protocol for interfacing with single messages as 

described above. 

For more details on the I2C bus, refer to the I2C specification here: 

http://www.nxp.com/documents/user_manual/UM10204.pdf 
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