ALTIMETER DESIGN AND OPERATION Dan Wolf #### **ALTIMETER DESIGN AND OPERATION** #### **AGENDA** - Barometric Altimeter Theory & Design - Altimeter Operation - Hints and Tips for Best Performance - Q&A ### **Barometric Altimeter Theory** Air pressure decreases with increasing altitude. The pressure at any level in the atmosphere may be interpreted as the total weight of the air above a unit area at any elevation. At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels. The pressure versus altitude relationship has been studied extensively and a standard atmosphere equation defined. #### **Definitions** **Barometer** – Device used to measure the change in air pressure, typically at a fixed or base station location. Used to predict changes in weather. **Barometric Altimeter** – Device that uses changes in air pressure to determine changes in altitude. Typically used in aircraft. If we can accurately measure the air pressure then we can determine the altitude accurately as well. #### **Digital Barometric Pressure Sensor Design** Highly Accurate and Low Cost Sensor #### **Rocketry altimeter** NARCON ZOTA A rocketry altimeter is a device with the a digital pressure sensor and a microprocessor. The microprocessor "reads" the data from the pressure sensor and converts it to altitude using the formula at right following this sequence. - 1. Measure/save launch site pressure. - 2. Detect Launch (sudden pressure change). - Continue to read pressure (10 times or more per second) until apogee is detected (readings change from decreasing pressure to increasing pressure). - 4. Calculate altitude from pressure difference of launch site pressure to apogee pressure. Note: Altimeters also do filtering of the data for noise. Recording altimeters also save all the data collected for flight profile review. H= 44330.7249 *(1 - (P/P0)^0.1902632)) H = Altitude of flight P = Apogee pressure P0 = Launch site pressure Assumes 59F temperature. All commercial altimeters make this assumption except for ALT-BMP where launch site temperature can be used. #### **Altimeter Operation** #### **Considerations for Using an Altimeter in a Rocket** - 1. Place in separate compartment sealed from engine ejection gases - 2. Mount securely (avoid allowing it to move around) - 3. Avoid direct sunlight during insertion in rocket - 4. Payload compartment should be opaque - 5. Payload compartment should have vent holes | Compartment
Diameter | Compartment Four Holes Length Equally Spaced | | |-------------------------|--|------------------------| | < 1.5" | 6" | 0.12" (small pinholes) | | 1.6" | 6" | 0.12" (small pinholes) | | 2.1" | 6" | .021" | | 3" | 8" | .057" | | 3" | 12" | .085" | | 3.9" | 8" | .101" | | 3.9" | 12" | .151" | # PERFECTFLITE ALTIMETER BEEP/BLINK SEQUENCES PNUT AND FIREFLY | SEQUENCE
STEP | PNUT
AT POWER-UP | PNUT
POST FLIGHT | FIREFLY
AT POWER-UP | FIREFLY
POST FLIGHT | |------------------|--------------------------------------|--|--|--------------------------------| | 1 | Prior Altitude beeps | Extra Long Tone (start of sequence) | LED on for 1 second | Long Blink (start of sequence) | | 2 | 2 second pause | Max Altitude beeps | Pause | Max Altitude blinks | | 3 | Battery voltage beeps | Long Separator
Tone
(Higher Pitch) | Prior Altitude
beeps | 3 second pause | | 4 | 30 second pause (load in rocket now) | Max Velocity beeps
(Higher Pitch) | 30 second pause (load in rocket now) | Long Blink | | 5 | 1 second chirp | 5 second pause | LED blinks once per second | Max Velocity Beeps | | 6 | Launch Rocket | 10 second warbling Siren Tone | Wait ay least 60 seconds from power on | 8 second pause then repeats | | 7 | | 10 second pause then repeats | Launch Rocket | | ## PERFECTFLITE ALTIMETER BEEP/BLINK SEQUENCES APRA and STRATOLOGGER | SEQUENCE
STEP | APRA
AT POWER-UP | APRA
POST FLIGHT | STRATOLOGGER
AT POWER-UP | STRATOLOGGER
POST FLIGHT | |------------------|--------------------------------------|---------------------------------------|---|-----------------------------| | 1 st | Prior Altitude
beeps | Extra Long Tone (start of sequence) | Beeps selected preset | | | | | Max Altitude beeps | | | | 2nd | 2 second pause | Long Separator Tone
(Higher Pitch) | 2 second pause | | | 3rd | Battery voltage
beeps | Max Velocity beeps
(Higher Pitch) | Main deploy alt.
setting then optional
apogee delay | | | 4 th | 30 second pause (load in rocket now) | 5 second pause | 2 second pause | | | 5 th | 1 second chirp | Warbling Siren Tone | Prior Altitude beeps | | | | Launch Rocket | 10 second pause then repeats | | | #### **Altimeter Hints and Tips** 1. Although the Firefly is cheaper, consider spending more for the Pnut and the download cable (or borrow one). Looking at flight profile is helpful for both ascent and descent analysis. NARCON 7017 - 2. Pnut warble tone and other beeps is helpful for locating rocket on the ground. - 3. Cushion the altimeter in the compartment for hard landings and minimizing ejection spikes. - 4. Listen for ready chirp (Pnut) or look in vent hole for ready blink (Firefly) to make sure altimeter is still armed right before flight. - 5. Altitude reported by an altimeter assumes air temperature is 15C (59F). Altimeter will under report the actual altitude if it is warmer, it will over report the actual altitude if it is colder. Corrected Altitude = Reported Altitude * (273.15 + Launch Site Temp C)/288.15 ## Q & A